Bibliografia: Gastroenterologia di segnale: l’attività sportiva cambia i nostri microbi intestinali

Articolo L’altra Medicina N. 98 – 08-09/2020
Bibliografia

  • Med Sci Sports Exerc.2018 Apr;50(4):747-757. doi: 0.1249/MSS.0000000000001495. Exercise Alters Gut Microbiota Composition and Function in Lean and Obese Humans. Allen JM1Mailing LJ1Niemiro GM1Moore R1Cook MD1White BA1Holscher HD1,1,1Woods JA1,1.)
  • – Gut microbiota Original article – The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level
  1. Wiley Barton1,2,3,
  2. Nicholas C Penney4,5,
  3. Owen Cronin1,3,
  4. Isabel Garcia-Perez4,
  5. Michael G Molloy1,3,
  6. Elaine Holmes4,
  7. Fergus Shanahan1,3,
  8. Paul D Cotter1,2,
  9. Orla O’Sullivan1,2 )

 

Title: The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level
Author: Wiley Barton,Nicholas C Penney,Owen Cronin,Isabel Garcia-Perez,Michael G Molloy,Elaine Holmes,Fergus Shanahan,Paul D Cotter,Orla O’Sullivan
Publication: Gut
Publisher: BMJ Publishing Group Ltd.
Date: Apr 1, 2018

 

 

 

  1. Walsh NP, Gleeson M, Shephard RJ, Gleeson M, Woods JA, Bishop NC, Fleshner M, Green C, Pedersen BK, Hoffman-Goetz L, et al. Position statement. Part one: Immune function and exercise. Exerc Immunol Rev. 2011;17:6-63. PMID:21446352

[PubMed][Web of Science ®]

[Google Scholar]

  1. Walsh NP, Gleeson M, Pyne DB, Nieman DC, Dhabhar FS, Shephard RJ, Oliver SJ, Bermon S, Kajeniene A. Position statement. Part two: Maintaining immune health. Exerc Immunol Rev. 2011;17:64-103. PMID:21446353

[PubMed][Web of Science ®]

[Google Scholar]

  1. Allen JM, Berg Miller ME, Pence BD, Whitlock K, Nehra V, Gaskins HR, White BA, Fryer JD, Woods JA. Voluntary and forced exercise differentially alters the gut microbiome in C57BL/6J mice. J Appl Physiol (1985). 2015;118:1059-66. doi:10.1152/japplphysiol.01077.2014. PMID:25678701

[Crossref][PubMed][Web of Science ®]

[Google Scholar]

  1. Mika A, Van Treuren W, Gonzalez A, Herrera JJ, Knight R, Fleshner M. Exercise is More Effective at Altering Gut Microbial Composition and Producing Stable Changes in Lean Mass in Juvenile versus Adult Male F344 Rats. PLoS One. 2015;10:e0125889. doi:10.1371/journal.pone.0125889. PMID:26016739

[Crossref][PubMed][Web of Science ®]

[Google Scholar]

  1. Choi JJ, Eum SY, Rampersaud E, Daunert S, Abreu MT, Toborek M. Exercise attenuates PCB-induced changes in the mouse gut microbiome. Environ Health Perspect. 2013;121:725-30. doi:10.1289/ehp.1306534. PMID:23632211

[Crossref][PubMed][Web of Science ®]

[Google Scholar]

  1. Matsumoto M, Inoue R, Tsukahara T, Ushida K, Chiji H, Matsubara N, Hara H. Voluntary running exercise alters microbiota composition and increases n-butyrate concentration in the rat cecum. Biosci Biotechnol Biochem. 2008;72:572-6. doi:10.1271/bbb.70474. PMID:18256465

[Taylor & Francis Online][Web of Science ®]

[Google Scholar]

  1. Queipo-Ortuno MI, Seoane LM, Murri M, Pardo M, Gomez-Zumaquero JM, Cardona F, Casanueva F, Tinahones FJ. Gut Microbiota Composition in Male Rat Models under Different Nutritional Status and Physical Activity and Its Association with Serum Leptin and Ghrelin Levels. PloS one. 2013;8:e65465. doi:10.1371/journal.pone.0065465. PMID:23724144

[Crossref][PubMed][Web of Science ®]

[Google Scholar]

  1. Kang SS, Jeraldo PR, Kurti A, Miller ME, Cook MD, Whitlock K, Goldenfeld N, Woods JA, White BA, Chia N, et al. Diet and exercise orthogonally alter the gut microbiome and reveal independent associations with anxiety and cognition. Mol Neurodegener. 2014;9:36. doi:10.1186/1750-1326-9-36. PMID:25217888

[Crossref][PubMed][Web of Science ®]

[Google Scholar]

  1. Evans CC, Lepard KJ, Kwak JW, Stancukas MC, Laskowski S, Dougherty J, Moulton L, Glawe A, Wang Y, Leone V, et al. Exercise prevents weight gain and alters the gut microbiota in a mouse model of high fat diet-induced obesity. PLoS One. 2014;9:e92193. doi:10.1371/journal.pone.0092193. PMID:24670791

[Crossref][PubMed][Web of Science ®]

[Google Scholar]

  1. Lambert JE, Myslicki JP, Bomhof MR, Belke DD, Shearer J, Reimer RA. Exercise training modifies gut microbiota in normal and diabetic mice. Appl Physiol Nutr Metab. 2015;40:749-52. doi:10.1139/apnm-2014-0452. PMID:25962839

[Crossref][PubMed][Web of Science ®]

[Google Scholar]

  1. Turnbaugh PJ, Backhed F, Fulton L, Gordon JI. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe. 2008;3:213-23. doi:10.1016/j.chom.2008.02.015. PMID:18407065

[Crossref][PubMed][Web of Science ®]

[Google Scholar]

  1. Cho I, Yamanishi S, Cox L, Methé BA, Zavadil J, Li K, Gao Z, Mahana D, Raju K, Teitler I, et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature. 2012;488:621-6. doi:10.1038/nature11400. PMID:22914093

[Crossref][PubMed][Web of Science ®]

[Google Scholar]

  1. Rokhsefat S, Lin A, Comelli EM. Mucin-Microbiota Interaction During Postnatal Maturation of the Intestinal Ecosystem: Clinical Implications. Dig Dis Sci. 2016. doi:10.1007/s10620-016-4032-6. PMID:26792279

[Crossref][PubMed][Web of Science ®]

[Google Scholar]

  1. Earle KA, Billings G, Sigal M, Lichtman JS, Hansson GC, Elias JE, Amieva MR, Huang KC, Sonnenburg JL. Quantitative Imaging of Gut Microbiota Spatial Organization. Cell host & microbe. 2015;18:478-88. doi:10.1016/j.chom.2015.09.002.

[Crossref][PubMed][Web of Science ®]

[Google Scholar]

  1. Willemsen LE, Koetsier MA, van Deventer SJ, van Tol EA. Short chain fatty acids stimulate epithelial mucin 2 expression through differential effects on prostaglandin E(1) and E(2) production by intestinal myofibroblasts. Gut. 2003;52:1442-7. doi:10.1136/gut.52.10.1442. PMID:12970137

[Crossref][PubMed][Web of Science ®]

[Google Scholar]

  1. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027-31. doi:10.1038/nature05414. PMID:17183312

[Crossref][PubMed][Web of Science ®]

[Google Scholar]

  1. Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogiannaki E, Cameron J, Grosse J, Reimann F, Gribble FM. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes. 2012;61:364-71. doi:10.2337/db11-1019. PMID:22190648

[Crossref][PubMed][Web of Science ®]

[Google Scholar]

  1. Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P, Liu H, Cross JR, Pfeffer K, Coffer PJ, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504:451-5. doi:10.1038/nature12726. PMID:24226773

[Crossref][PubMed][Web of Science ®]

[Google Scholar]

  1. Kaplan GG, Ng SC. Understanding and Preventing the Global Increase of Inflammatory Bowel Disease. Gastroenterology. 2017;152(2):313-21.

[Crossref][PubMed][Web of Science ®]

[Google Scholar]

  1. Kanauchi O, Mitsuyama K, Andoh A. The therapeutic impact of manipulating microbiota in inflammatory bowel disease. Curr Pharm Des. 2009;15:2074-86. doi:10.2174/138161209788489195. PMID:19519445

[Crossref][PubMed][Web of Science ®]

[Google Scholar]

  1. Cario E. Microbiota and innate immunity in intestinal inflammation and neoplasia. Curr Opin Gastroenterol. 2013;29:85-91. doi:10.1097/MOG.0b013e32835a670e. PMID:23207600

[Crossref][PubMed][Web of Science ®]

[Google Scholar]

  1. Moehle C, Ackermann N, Langmann T, Aslanidis C, Kel A, Kel-Margoulis O, Schmitz-Madry A, Zahn A, Stremmel W, Schmitz G. Aberrant intestinal expression and allelic variants of mucin genes associated with inflammatory bowel disease. J Mol Med (Berl). 2006;84:1055-66. doi:10.1007/s00109-006-0100-2. PMID:17058067

[Crossref][PubMed][Web of Science ®]

[Google Scholar]

  1. McGuckin MA, Eri R, Simms LA, Florin TH, Radford-Smith G. Intestinal barrier dysfunction in inflammatory bowel diseases. Inflamm Bowel Dis. 2009;15:100-13. doi:10.1002/ibd.20539. PMID:18623167

[Crossref][PubMed][Web of Science ®]

[Google Scholar]

  1. Cleynen I, Vermeire S. Paradoxical inflammation induced by anti-TNF agents in patients with IBD. Nat Rev Gastroenterol Hepatol. 2012; 9: 496-503. doi:10.1038/nrgastro.2012.125. PMID:22751454

[Crossref][PubMed][Web of Science ®]

[Google Scholar]

  1. George LA, Gadani A, Cross RK, Jambaulikar G, Ghazi LJ. Psoriasiform Skin Lesions Are Caused by Anti-TNF Agents Used for the Treatment of Inflammatory Bowel Disease. Dig Dis Sci. 2015;60:3424-30. doi:10.1007/s10620-015-3763-0. PMID:26115749

[Crossref][PubMed][Web of Science ®]

[Google Scholar]

  1. Lemann M. Treatment of chronic inflammatory bowel diseases. Bull Acad Natl Med. 2007;191:1125-41; discussion 41. PMID:18402168

[PubMed][Web of Science ®]

[Google Scholar]

  1. Bilski J, Mazur-Bialy A, Brzozowski B, Magierowski M, Zahradnik-Bilska J, Wójcik D, Magierowska K, Kwiecien S, Mach T, Brzozowski T. Can exercise affect the course of inflammatory bowel disease? Experimental and clinical evidence. Pharmacological reports : PR. 2016;68:827-36. doi:10.1016/j.pharep.2016.04.009. PMID:27255494

[Crossref][PubMed][Web of Science ®]

[Google Scholar]

  1. Trojian TH, Mody K, Chain P. Exercise and colon cancer: primary and secondary prevention. Curr Sports Med Rep. 2007;6:120-4. PMID:17376341

[PubMed]

[Google Scholar]

  1. Cook MD, Martin SA, Williams C, Whitlock K, Wallig MA, Pence BD, Woods JA. Forced treadmill exercise training exacerbates inflammation and causes mortality while voluntary wheel training is protective in a mouse model of colitis. Brain Behav Immun. 2013;33:46-56. doi:10.1016/j.bbi.2013.05.005. PMID:23707215

[Crossref][PubMed][Web of Science ®]

[Google Scholar]

  1. Bilski J, Mazur-Bialy AI, Brzozowski B, Magierowski M, Jasnos K, Krzysiek-Maczka G, Urbanczyk K, Ptak-Belowska A, Zwolinska-Wcislo M, Mach T, et al. Moderate exercise training attenuates the severity of experimental rodent colitis: the importance of crosstalk between adipose tissue and skeletal muscles. Mediators of inflammation. 2015;2015:605071v10.1155/2015/605071. PMID:25684862

[Crossref][PubMed][Web of Science ®]

[Google Scholar]

  1. Murphy EF, Cotter PD, Healy S, Marques TM, O’Sullivan O, Fouhy F, Clarke SF, O’Toole PW, Quigley EM, Stanton C, et al. Composition and energy harvesting capacity of the gut microbiota: relationship to diet, obesity and time in mouse models. Gut. 2010;59:1635-42. doi:10.1136/gut.2010.215665. PMID:20926643

[Crossref][PubMed][Web of Science ®]

[Google Scholar]

  1. Louis P, Flint HJ. Development of a semiquantitative degenerate real-time pcr-based assay for estimation of numbers of butyryl-coenzyme A (CoA) CoA transferase genes in complex bacterial samples. Appl Environ Microbiol. 2007;73:2009-12. doi:10.1128/AEM.02561-06. PMID:17259367

[Crossref][PubMed][Web of Science ®]

[Google Scholar]

  1. Brinkman BM, Becker A, Ayiseh RB, Hildebrand F, Raes J, Huys G, Vandenabeele P. Gut microbiota affects sensitivity to acute DSS-induced colitis independently of host genotype. Inflamm Bowel Dis. 2013;19:2560-7. doi:10.1097/MIB.0b013e3182a8759a. PMID:24105395

[Crossref][PubMed][Web of Science ®]

[Google Scholar]

  1. Liang X, Li H, Tian G, Li S. Dynamic microbe and molecule networks in a mouse model of colitis-associated colorectal cancer. Sci Rep. 2014;4:4985. doi:10.1038/srep04985. PMID:24828543

[Crossref][PubMed][Web of Science ®]

[Google Scholar]

  1. Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, Guiot Y, Derrien M, Muccioli GG, Delzenne NM, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A. 2013;110:9066-71. doi:10.1073/pnas.1219451110. PMID:23671105

[Crossref][PubMed][Web of Science ®]

[Google Scholar]

  1. Vital M, Howe AC, Tiedje JM. Revealing the bacterial butyrate synthesis pathways by analyzing (meta)genomic data. mBio. 2014;5:e00889. doi:10.1128/mBio.00889-14. PMID:24757212

[Crossref][PubMed][Web of Science ®]

[Google Scholar]

  1. Blanton LV, Charbonneau MR, Salih T, Barratt MJ, Venkatesh S, Ilkaveya O, Subramanian S, Manary MJ, Trehan I, Jorgensen JM, et al. Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children. Science. 2016;351:830-7. doi:10.1126/science.aad3311. PMID:26912898.

[Crossref][PubMed][Web of Science ®]

[Google Scholar]

  1. Gensollen T, Iyer SS, Kasper DL, Blumberg RS. How colonization by microbiota in early life shapes the immune system. Science. 2016;352:539-44. doi:10.1126/science.aad9378. PMID:27126036

[Crossref][PubMed][Web of Science ®]

[Google Scholar]

  1. Abraham C, Cho JH. IL-23 and autoimmunity: new insights into the pathogenesis of inflammatory bowel disease. Annu Rev Med. 2009;60:97-110. doi:10.1146/annurev.med.60.051407.123757. PMID:18976050

[Crossref][PubMed][Web of Science ®]

[Google Scholar]

  1. Mortha A, Chudnovskiy A, Hashimoto D, Bogunovic M, Spencer SP, Belkaid Y, Merad M. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science. 2014;343:1249288. doi:10.1126/science.1249288. PMID:24625929

[Crossref][PubMed][Web of Science ®]

[Google Scholar]

  1. Cherayil BJ. Indoleamine 2,3-dioxygenase in intestinal immunity and inflammation. Inflamm Bowel Dis. 2009;15:1391-6. doi:10.1002/ibd.20910. PMID:19322906

[Crossref][PubMed][Web of Science ®]

[Google Scholar]

  1. Wolf AM, Wolf D, Rumpold H, Moschen AR, Kaser A, Obrist P, Fuchs D, Brandacher G, Winkler C, Geboes K, et al. Overexpression of indoleamine 2,3-dioxygenase in human inflammatory bowel disease. Clin Immunol. 2004;113:47-55. doi:10.1016/j.clim.2004.05.004. PMID:15380529

[Crossref][PubMed][Web of Science ®]

[Google Scholar]

  1. Clarke G, McKernan DP, Gaszner G, Quigley EM, Cryan JF, Dinan TG. A Distinct Profile of Tryptophan Metabolism along the Kynurenine Pathway Downstream of Toll-Like Receptor Activation in Irritable Bowel Syndrome. Front Pharmacol. 2012;3:90. doi:10.3389/fphar.2012.00090. PMID:22661947

[Crossref][PubMed][Web of Science ®]

[Google Scholar]

  1. Machiels K, Joossens M, Sabino J, De Preter V, Arijs I, Eeckhaut V, Ballet V, Claes K, Van Immerseel F, Verbeke K, et al. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut. 2014;63:1275-83. doi:10.1136/gutjnl-2013-304833. PMID:24021287

[Crossref][PubMed][Web of Science ®]

[Google Scholar]

  1. Groux H, O’Garra A, Bigler M, Rouleau M, Antonenko S, de Vries JE, Roncarolo MG. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature. 1997;389:737-42. doi:10.1038/39614. PMID:9338786

[Crossref][PubMed][Web of Science ®]

[Google Scholar]

  1. Powrie F, Carlino J, Leach MW, Mauze S, Coffman RL. A critical role for transforming growth factor-beta but not interleukin 4 in the suppression of T helper type 1-mediated colitis by CD45RB(low) CD4+ T cells. J Exp Med. 1996;183:2669-74. doi:10.1084/jem.183.6.2669. PMID:8676088

[Crossref][PubMed][Web of Science ®]

[Google Scholar]

  1. Becker C, Fantini MC, Neurath MF. TGF-beta as a T cell regulator in colitis and colon cancer. Cytokine Growth Factor Rev. 2006;17:97-106. doi:10.1016/j.cytogfr.2005.09.004. PMID:16298544

[Crossref][PubMed][Web of Science ®]

[Google Scholar]

  1. Chen J, Xie L, Toyama S, Hünig T, Takahara S, Li XK, Zhong L. The effects of Foxp3-expressing regulatory T cells expanded with CD28 superagonist antibody in DSS-induced mice colitis. Int Immunopharmacol. 2011;11:610-7. doi:10.1016/j.intimp.2010.11.034. PMID:21163250

[Crossref][PubMed][Web of Science ®]

[Google Scholar]

  1. Lamas B, Richard ML, Leducq V, Pham HP, Michel ML, Da Costa G, Bridonneau C, Jegou S, Hoffmann TW, Natividad JM, et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat Med.. 2016;22:598-605. doi:10.1038/nm.4102. PMID:27158904

[Crossref][PubMed][Web of Science ®]

[Google Scholar]

  1. Martin JC, Beriou G, Heslan M, Bossard C, Jarry A, Abidi A, Hulin P, Ménoret S, Thinard R, Anegon I, et al. IL-22BP is produced by eosinophils in human gut and blocks IL-22 protective actions during colitis. Mucosal Immunol. 2016;9:539-49. doi:10.1038/mi.2015.83. PMID:26329427

[Crossref][PubMed][Web of Science ®]

[Google Scholar]

  1. Sugimoto K, Ogawa A, Mizoguchi E, Shimomura Y, Andoh A, Bhan AK, Blumberg RS, Xavier RJ, Mizoguchi A. IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis. J Clin Invest. 2008;118:534-44. PMID:18172556

[PubMed][Web of Science ®]

[Google Scholar]

  1. Bergstrom KS, Morampudi V, Chan JM, Bhinder G, Lau J, Yang H, Ma C, Huang T, Ryz N, Sham HP, et al. Goblet Cell Derived RELM-beta Recruits CD4+ T Cells during Infectious Colitis to Promote Protective Intestinal Epithelial Cell Proliferation. PLoS Pathog. 2015;11:e1005108. doi:10.1371/journal.ppat.1005108. PMID:26285214

[Crossref][PubMed][Web of Science ®]

[Google Scholar]

  1. Johansson ME, Gustafsson JK, Sjoberg KE, Petersson J, Holm L, Sjövall H, Hansson GC. Bacteria penetrate the inner mucus layer before inflammation in the dextran sulfate colitis model. PloS One. 2010;5:e12238. doi:10.1371/journal.pone.0012238. PMID:20805871

[Crossref][PubMed][Web of Science ®]

[Google Scholar]

  1. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci U S A. 2011;108(Suppl 1):4516-22. doi:10.1073/pnas.1000080107. PMID:20534432

[Crossref][PubMed][Web of Science ®]

[Google Scholar]

  1. Erben U, Loddenkemper C, Doerfel K, Spieckermann S, Haller D, Heimesaat MM, Zeitz M, Siegmund B, Kühl AA. A guide to histomorphological evaluation of intestinal inflammation in mouse models. Int J Clin Exp Pathol. 2014;7:4557-76. PMID:25197329

[PubMed][Web of Science ®]

[Google Scholar]